Showing:

Annotations
Attributes
Diagrams
Facets
Properties
Source
Used by
Complex Type gml:SphereType
Namespace http://www.opengis.net/gml
Annotations
A sphere is a gridded surface given as a
   family of circles whose positions vary linearly along the
   axis of the sphere, and whise radius varies in proportions to
   the cosine function of the central angle. The horizontal 
   circles resemble lines of constant latitude, and the vertical
   arcs resemble lines of constant longitude. 
   NOTE! If the control points are sorted in terms of increasing
   longitude, and increasing latitude, the upNormal of a sphere
   is the outward normal.
   EXAMPLE If we take a gridded set of latitudes and longitudes
   in degrees,(u,v) such as

	(-90,-180)  (-90,-90)  (-90,0)  (-90,  90) (-90, 180) 
	(-45,-180)  (-45,-90)  (-45,0)  (-45,  90) (-45, 180) 
	(  0,-180)  (  0,-90)  (  0,0)  (  0,  90) (  0, 180)
	( 45,-180)  ( 45,-90)  ( 45,0)  ( 45, -90) ( 45, 180)
	( 90,-180)  ( 90,-90)  ( 90,0)  ( 90, -90) ( 90, 180)
   
   And map these points to 3D using the usual equations (where R
   is the radius of the required sphere).

    z = R sin u
    x = (R cos u)(sin v)
    y = (R cos u)(cos v)

   We have a sphere of Radius R, centred at (0,0), as a gridded
   surface. Notice that the entire first row and the entire last
   row of the control points map to a single point in each 3D
   Euclidean space, North and South poles respectively, and that
   each horizontal curve closes back on itself forming a 
   geometric cycle. This gives us a metrically bounded (of finite
   size), topologically unbounded (not having a boundary, a
   cycle) surface.
Diagram
Diagram docindex47.tmp#id553 docindex48.tmp#id570 docindex49.tmp#id567 docindex49.tmp#id566 docindex50.tmp#id573 docindex50.tmp#id574 docindex50.tmp#id572 docindex224.tmp#id582 docindex224.tmp#id583
Type extension of gml:AbstractGriddedSurfaceType
Type hierarchy
Used by
Element gml:Sphere
Model gml:row+ , gml:rows{0,1} , gml:columns{0,1}
Children gml:columns, gml:row, gml:rows
Attributes
QName Type Fixed Default Use Annotation
horizontalCurveType gml:CurveInterpolationType circularArc3Points optional
verticalCurveType gml:CurveInterpolationType circularArc3Points optional
Source
<complexType name="SphereType">
  <annotation>
    <documentation>A sphere is a gridded surface given as a family of circles whose positions vary linearly along the axis of the sphere, and whise radius varies in proportions to the cosine function of the central angle. The horizontal circles resemble lines of constant latitude, and the vertical arcs resemble lines of constant longitude. NOTE! If the control points are sorted in terms of increasing longitude, and increasing latitude, the upNormal of a sphere is the outward normal. EXAMPLE If we take a gridded set of latitudes and longitudes in degrees,(u,v) such as (-90,-180) (-90,-90) (-90,0) (-90, 90) (-90, 180) (-45,-180) (-45,-90) (-45,0) (-45, 90) (-45, 180) ( 0,-180) ( 0,-90) ( 0,0) ( 0, 90) ( 0, 180) ( 45,-180) ( 45,-90) ( 45,0) ( 45, -90) ( 45, 180) ( 90,-180) ( 90,-90) ( 90,0) ( 90, -90) ( 90, 180) And map these points to 3D using the usual equations (where R is the radius of the required sphere). z = R sin u x = (R cos u)(sin v) y = (R cos u)(cos v) We have a sphere of Radius R, centred at (0,0), as a gridded surface. Notice that the entire first row and the entire last row of the control points map to a single point in each 3D Euclidean space, North and South poles respectively, and that each horizontal curve closes back on itself forming a geometric cycle. This gives us a metrically bounded (of finite size), topologically unbounded (not having a boundary, a cycle) surface.</documentation>
  </annotation>
  <complexContent>
    <extension base="gml:AbstractGriddedSurfaceType">
      <attribute name="horizontalCurveType" type="gml:CurveInterpolationType" fixed="circularArc3Points"/>
      <attribute name="verticalCurveType" type="gml:CurveInterpolationType" fixed="circularArc3Points"/>
    </extension>
  </complexContent>
</complexType>
Schema location http://schemas.opengis.net/gml/3.1.1/base/geometryPrimitives.xsd
Attribute gml:SphereType/@horizontalCurveType
Namespace No namespace
Type gml:CurveInterpolationType
Properties
fixed: circularArc3Points
Facets
enumeration linear, geodesic, circularArc3Points, circularArc2PointWithBulge, circularArcCenterPointWithRadius, elliptical, clothoid, conic, polynomialSpline, cubicSpline, rationalSpline
Used by
Complex Type gml:SphereType
Source
<attribute name="horizontalCurveType" type="gml:CurveInterpolationType" fixed="circularArc3Points"/>
Schema location http://schemas.opengis.net/gml/3.1.1/base/geometryPrimitives.xsd
Attribute gml:SphereType/@verticalCurveType
Namespace No namespace
Type gml:CurveInterpolationType
Properties
fixed: circularArc3Points
Facets
enumeration linear, geodesic, circularArc3Points, circularArc2PointWithBulge, circularArcCenterPointWithRadius, elliptical, clothoid, conic, polynomialSpline, cubicSpline, rationalSpline
Used by
Complex Type gml:SphereType
Source
<attribute name="verticalCurveType" type="gml:CurveInterpolationType" fixed="circularArc3Points"/>
Schema location http://schemas.opengis.net/gml/3.1.1/base/geometryPrimitives.xsd