Showing:

Annotations
Attributes
Diagrams
Facets
Properties
Source
Used by
Element metobj:SimpleCubicSplineType / metobj:vectorAtStart
Namespace http://xml.fmi.fi/namespace/meteorology/conceptual-model/meteorological-objects/2009/09/07
Annotations
"vectorAtStart" is the unit tangent vector at the start point of the spline.
Diagram
Diagram docindex201.tmp#id116 docindex63.tmp#id117 docindex202.tmp#id115 docindex297.tmp#id330
Type gml:VectorType
Type hierarchy
Properties
content: complex
Attributes
QName Type Fixed Default Use Annotation
axisLabels gml:NCNameList optional
srsDimension positiveInteger optional
srsName anyURI optional
uomLabels gml:NCNameList optional
Source
<element name="vectorAtStart" type="gml:VectorType">
  <annotation>
    <documentation>"vectorAtStart" is the unit tangent vector at the start point of the spline.</documentation>
  </annotation>
</element>
Schema location http://xml.fmi.fi/schema/meteorology/conceptual-model/meteorological-objects/2009/09/07/metobjects-common-geometry.xsd
Element metobj:SimpleCubicSplineType / metobj:vectorAtEnd
Namespace http://xml.fmi.fi/namespace/meteorology/conceptual-model/meteorological-objects/2009/09/07
Annotations
"vectorAtEnd" is the unit tangent vector at the end point of the spline.
Diagram
Diagram docindex201.tmp#id116 docindex63.tmp#id117 docindex202.tmp#id115 docindex297.tmp#id330
Type gml:VectorType
Type hierarchy
Properties
content: complex
Attributes
QName Type Fixed Default Use Annotation
axisLabels gml:NCNameList optional
srsDimension positiveInteger optional
srsName anyURI optional
uomLabels gml:NCNameList optional
Source
<element name="vectorAtEnd" type="gml:VectorType">
  <annotation>
    <documentation>"vectorAtEnd" is the unit tangent vector at the end point of the spline.</documentation>
  </annotation>
</element>
Schema location http://xml.fmi.fi/schema/meteorology/conceptual-model/meteorological-objects/2009/09/07/metobjects-common-geometry.xsd
Complex Type metobj:SimpleCubicSplineType
Namespace http://xml.fmi.fi/namespace/meteorology/conceptual-model/meteorological-objects/2009/09/07
Annotations
Cubic splines are similar to line strings in that they are a sequence of segments each with its own defining function. A cubic spline uses the control points and a set of derivative parameters to define a piecewise 3rd degree polynomial interpolation. Unlike line-strings, the parameterization by arc length is not necessarily still a polynomial. 
The function describing the curve must be C2, that is, have a continuous 1st and 2nd derivative at all points, and pass through the controlPoints in the order given. Between the control points, the curve segment is defined by a cubic polynomial. At each control point, the polynomial changes in such a manner that the 1st and 2nd derivative vectors are the same from either side. The control parameters record must contain vectorAtStart, and vectorAtEnd which are the unit tangent vectors at controlPoint[1] and controlPoint[n] where n = controlPoint.count. 
Note: only the direction of the vectors is relevant, not their length.
Diagram
Diagram docindex298.tmp#id549 docindex298.tmp#id550 docindex298.tmp#id551 docindex298.tmp#id548 docindex584.tmp#id2192 docindex584.tmp#id2193 docindex151.tmp#id274 docindex584.tmp#id2190 docindex584.tmp#id2191
Type extension of gml:AbstractCurveSegmentType
Type hierarchy
Used by
Model gml:posList , metobj:vectorAtStart , metobj:vectorAtEnd
Children gml:posList, metobj:vectorAtEnd, metobj:vectorAtStart
Attributes
QName Type Fixed Default Use Annotation
degree integer 3 optional
The degree for a cubic spline is "3".
interpolation gml:CurveInterpolationType cubicSpline optional
The attribute "interpolation" specifies the curve interpolation mechanism used for this segment. This mechanism
uses the control points and control parameters to determine the position of this curve segment. For a CubicSpline the interpolation is fixed as "cubicSpline".
numDerivativeInterior integer 0 optional
numDerivativesAtEnd integer 0 optional
numDerivativesAtStart integer 0 optional
Source
<complexType name="SimpleCubicSplineType">
  <annotation>
    <documentation>Cubic splines are similar to line strings in that they are a sequence of segments each with its own defining function. A cubic spline uses the control points and a set of derivative parameters to define a piecewise 3rd degree polynomial interpolation. Unlike line-strings, the parameterization by arc length is not necessarily still a polynomial. The function describing the curve must be C2, that is, have a continuous 1st and 2nd derivative at all points, and pass through the controlPoints in the order given. Between the control points, the curve segment is defined by a cubic polynomial. At each control point, the polynomial changes in such a manner that the 1st and 2nd derivative vectors are the same from either side. The control parameters record must contain vectorAtStart, and vectorAtEnd which are the unit tangent vectors at controlPoint[1] and controlPoint[n] where n = controlPoint.count. Note: only the direction of the vectors is relevant, not their length.</documentation>
  </annotation>
  <complexContent>
    <extension base="gml:AbstractCurveSegmentType">
      <sequence>
        <annotation>
          <documentation>Unlike in gml:CubicSplineType, positions can only be specified in one way: inlined using gml:posList. The number of direct positions in the list must be at least three.</documentation>
        </annotation>
        <element ref="gml:posList"/>
        <element name="vectorAtStart" type="gml:VectorType">
          <annotation>
            <documentation>"vectorAtStart" is the unit tangent vector at the start point of the spline.</documentation>
          </annotation>
        </element>
        <element name="vectorAtEnd" type="gml:VectorType">
          <annotation>
            <documentation>"vectorAtEnd" is the unit tangent vector at the end point of the spline.</documentation>
          </annotation>
        </element>
      </sequence>
      <attribute name="interpolation" type="gml:CurveInterpolationType" fixed="cubicSpline">
        <annotation>
          <documentation>The attribute "interpolation" specifies the curve interpolation mechanism used for this segment. This mechanism uses the control points and control parameters to determine the position of this curve segment. For a CubicSpline the interpolation is fixed as "cubicSpline".</documentation>
        </annotation>
      </attribute>
      <attribute name="degree" type="integer" fixed="3">
        <annotation>
          <documentation>The degree for a cubic spline is "3".</documentation>
        </annotation>
      </attribute>
    </extension>
  </complexContent>
</complexType>
Schema location http://xml.fmi.fi/schema/meteorology/conceptual-model/meteorological-objects/2009/09/07/metobjects-common-geometry.xsd
Attribute metobj:SimpleCubicSplineType / @interpolation
Namespace No namespace
Annotations
The attribute "interpolation" specifies the curve interpolation mechanism used for this segment. This mechanism
uses the control points and control parameters to determine the position of this curve segment. For a CubicSpline the interpolation is fixed as "cubicSpline".
Type gml:CurveInterpolationType
Properties
fixed: cubicSpline
Facets
enumeration linear
enumeration geodesic
enumeration circularArc3Points
enumeration circularArc2PointWithBulge
enumeration circularArcCenterPointWithRadius
enumeration elliptical
enumeration clothoid
enumeration conic
enumeration polynomialSpline
enumeration cubicSpline
enumeration rationalSpline
Used by
Source
<attribute name="interpolation" type="gml:CurveInterpolationType" fixed="cubicSpline">
  <annotation>
    <documentation>The attribute "interpolation" specifies the curve interpolation mechanism used for this segment. This mechanism uses the control points and control parameters to determine the position of this curve segment. For a CubicSpline the interpolation is fixed as "cubicSpline".</documentation>
  </annotation>
</attribute>
Schema location http://xml.fmi.fi/schema/meteorology/conceptual-model/meteorological-objects/2009/09/07/metobjects-common-geometry.xsd
Attribute metobj:SimpleCubicSplineType / @degree
Namespace No namespace
Annotations
The degree for a cubic spline is "3".
Type integer
Properties
fixed: 3
Used by
Source
<attribute name="degree" type="integer" fixed="3">
  <annotation>
    <documentation>The degree for a cubic spline is "3".</documentation>
  </annotation>
</attribute>
Schema location http://xml.fmi.fi/schema/meteorology/conceptual-model/meteorological-objects/2009/09/07/metobjects-common-geometry.xsd